

Brussels, 26 May 2016 (OR. en)

9386/16 ADD 2

ENV 358 ENT 95 MI 373

COVER NOTE

From:	European Commission
date of receipt:	10 May 2016
To:	General Secretariat of the Council
No. Cion doc.:	D044529/02 - Annexes 4 to 6
Subject:	Annexes to the Commission Regulation amending Regulation (EU) No 582/2011 with respect to emissions from heavy duty vehicles as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the procedure for the testing of the durability of replacement pollution control devices

Delegations will find attached document D044529/02 - Annexes 4 to 6.

Encl.: D044529/02 - Annexes 4 to 6

9386/16 ADD 2 AM/am

www.parlament.gv.at

EN

Brussels, XXX D044529/02 [...](2016) XXX draft

ANNEXES 4 to 6

ANNEXES

to the

Commission Regulation

amending Regulation (EU) No 582/2011 with respect to emissions from heavy duty vehicles as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the procedure for the testing of the durability of replacement pollution control devices

ANNEX IV

Annex XI to Regulation (EU) No 582/2011 is amended as follows:

- (1) point 4.3.2.4. is replaced by the following:
- '4.3.2.4. Durability of emissions performance

The exhaust after-treatment system tested in accordance with point 4.3.2.2 and incorporating the replacement pollution control device shall be subjected to the durability procedures described in Appendix 3.';

- (2) the following point 4.3.5. is inserted:
- 4.3.5. Fuels

In the case described in point 1.1.2 of Annex I, the test procedure laid down in points 4.3.1 to 4.3.2.7 of this Annex shall be conducted with the fuels declared by the manufacturer of the original engine system. However, in agreement with the type-approval authority, the durability procedure set out in Appendix 3 and referred to in point 4.3.2.4 may be performed only with the fuel which represents the worst case in terms of ageing.';

- (3) the following points 4.6 to 4.6.5. are inserted:
- 4 4.6. Requirements regarding compatibility with the NO_x control measures (applicable only to replacement pollution control devices to be fitted to vehicles equipped with sensors directly measuring NO_x concentration in the exhaust)
- $4.6.1.\ NO_x$ control measures compatibility demonstration is required only when the original pollution control device was monitored in the original configuration.
- 4.6.2. The compatibility of the replacement pollution control device with the NO_x control measures shall be demonstrated by using the procedures described in Annex XIII to this Regulation, for replacement pollution control devices intended to be fitted to engines or vehicles type-approved in accordance with Regulation (EC) No 595/2009 and this Regulation.
- 4.6.3. The provisions in UN/ECE Regulation No 49 applicable to components other than pollution control devices shall not apply.
- 4.6.4. The replacement pollution control device manufacturer may use the same preconditioning and test procedure as used during the original type-approval. In that case, the approval authority which granted original type-approval of an engine of a vehicle shall provide, on request and on a non-discriminatory basis, an information document presented as an appendix to the Information Document provided for in appendix 4 to Annex I, which contains the number and type of preconditioning cycles and the type of test cycle used by the

original equipment manufacturer for NO_x control measures testing of the pollution control device.

4.6.5. Point 4.5.5 shall apply to NOx control measures monitored by the OBD system.';

(4) Appendix 3 is replaced by the following:

'Appendix 3

Durability procedure for evaluation of emissions performance of a replacement pollution control device

- 1. This Appendix sets out the durability procedure referred to in point 4.3.2.4 of Annex XI, for the purpose of evaluating the emissions performance of a replacement pollution control device.
- 2. Description of the durability procedure
- 2.1. The durability procedure shall consist of a data collection phase and a service accumulation schedule.
- 2.2. Data collection phase
- 2.2.1. The selected engine, equipped with the complete exhaust after-treatment system incorporating the replacement pollution control device, shall be cooled down to ambient temperature and run one cold start WHTC test-cycle in accordance with paragraphs 7.6.1 and 7.6.2 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.2. Immediately after the cold start WHTC test-cycle, the engine shall be run for nine consecutive hot start WHTC test-cycles in accordance with paragraph 7.6.4 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.3. The test sequence set out in points 2.2.1 and 2.2.2 shall be carried out in accordance with the instructions laid down in paragraph 7.6.5 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.4. Alternatively, the relevant data can be collected by driving a fully loaded vehicle equipped with the selected exhaust after-treatment system incorporating the replacement pollution control device. The test can be carried out either on the road following the trip requirements of points 4.5. to 4.5.5. of Annex II to this Regulation with comprehensive recording of the driving data, or on a suitable chassis dynamometer. If an on-road test is chosen, the vehicle shall be driven over a cold test-cycle, as set out in Appendix 5 to this Annex, followed by nine hot test-cycles, identical to the cold one, in a way that the work developed by the engine is the same as the one achieved under points 2.2.1 and 2.2.2. If a chassis dynamometer is chosen, the simulated road gradient of the test-cycle in Appendix 5 shall be adapted to match the work developed by the engine over the WHTC.
- 2.2.5. The type-approval authority shall refuse the temperature data obtained under point 2.2.4 if it deems those data to be unrealistic and shall request either the repetition of the test, or the carrying out of a test pursuant to points 2.2.1., 2.2.2. and 2.2.3.
- 2.2.6. Temperatures in the replacement pollution control device shall be recorded during the whole test sequence, at the location with the highest temperature.
- 2.2.7. In cases where the location with the highest temperature varies over time, or where that location is difficult to define, multiple bed temperatures should be recorded at suitable locations.

- 2.2.8. The number and locations of the temperature measurements shall be selected by the manufacturer, in agreement with the type-approval authority, based on best engineering judgement.
- 2.2.9. With the agreement of the type-approval authority, a single catalyst bed temperature or the catalyst inlet temperature may be used if measuring multiple bed temperatures is proven to be unfeasible or too difficult.

Figure 1. Example of temperature sensors location in a generic after-treatment device

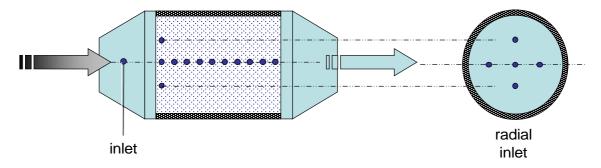
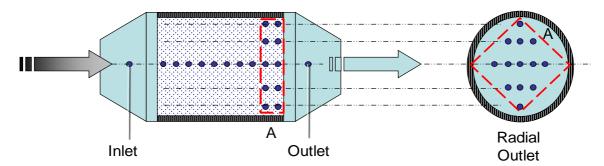



Figure 2. Example of temperature sensors location for DPF

- 2.2.10. The temperatures shall be measured and recorded at a minimum rate of once every second (1 Hz) during the test sequence.
- 2.2.11. The measured temperatures shall be tabulated into a histogram with temperature bins no larger than 10 °C. In the case mentioned in point 2.2.7., the highest temperature each second shall be the one recorded in the histogram. Each bar of the histogram shall represent the cumulated frequency in seconds of the measured temperatures falling in the specific bin.
- 2.2.12. The time in hours corresponding to each temperature bin must be determined and then extrapolated to the useful life of the replacement pollution control device, in accordance with the values specified in Table 1. The extrapolation shall be based on the assumption that one WHTC cycle corresponds to 20 km driving.

Table 1. Useful life of the replacement pollution control device for each vehicle category, and equivalent WHTC test-cycles and hours of operation

Vehicle category	Mileage (km)	Equivalent number of WHTC test-cycles	Equivalent number of hours
Engine systems fitted to vehicles of category M_1 , N_1 and N_2	114.286	5.714	2.857
Engine systems fitted to vehicles of category N_2 , N_3 with a maximum technically permissible mass not exceeding 16 tonnes and M_3 Class I, Class II and Class A, and Class B with a maximum technically permissible mass exceeding 7,5 tonnes	214.286	10.714	5.357
Engine systems fitted to vehicles of category N ₃ with a maximum technically permissible mass exceeding 16 tonnes, and M ₃ , Class III and Class B with a maximum technically permissible mass exceeding 7,5 tonnes	500.000	25.000	12.500

- 2.2.13. It is allowed to perform the data collection phase for different devices at the same time.
- 2.2.14. In the case of systems operating in the presence of active regeneration, the number, length and temperatures of the regenerations occurring during the test sequence defined in points 2.2.1. and 2.2.2. shall be recorded. If no active regeneration has occurred, the hot sequence defined in point 2.2.2. shall be extended in order to include at least two active regenerations.
- 2.2.15. The total lubricant consumed during the data collection period, in g/h, shall be recorded, using any suitable method, as for example the drain and weigh procedure described in Appendix 6. For this purpose, the engine shall be run during 24 hours, performing consecutive WHTC test-cycles. In cases where an accurate measurement of oil consumption cannot be obtained, the manufacturer, in agreement with the type-approval authority, may use the following options for the determination of the lubricant consumption:
- (a) a default value of 30 g/h;
- (b) a value requested by the manufacturer, based on sound data and information, and agreed with the type-approval authority.
- 2.3. Calculation of the equivalent ageing time corresponding to a reference temperature
- 2.3.1. The temperatures recorded pursuant to points 2.2. to 2.2.15. shall be reduced to a reference temperature T_r , requested by the manufacturer in agreement with the type-approval authority, within the range of the temperatures recorded during the data collection phase.
- 2.3.2. In the case specified in point 2.2.13., the value of T_r for each one of the devices may vary.
- 2.3.3. The equivalent ageing time corresponding to the reference temperature shall be calculated, for each bin referred to in 2.2.11., in accordance with the following equation:

Equation 1:

$$t_{e}^{i} = t_{bin}^{i} \times e^{\left(\left(\frac{R}{T_{r}}\right) - \left(\frac{R}{T_{bin}^{i}}\right)\right)}$$

Where:

R = thermal reactivity of the replacement pollution control device.

The following values shall be used:

- Diesel oxidation catalyst (DOC): 18.050.

- Catalysed DPF: 18.050

- SCR or ammonia oxidation catalyst (AMOX) based on iron-zeolite (Fe-Z): 5.175

- SCR copper-zeolite (Cu-Z): 11.550

- SCR Vanadium (V): 5.175

- LNT (lean-NOx trap): 18.050

 T_r = reference temperature, in K.

 $T_{bin}^{i} = \text{mid-point}$ temperature, in K, of the temperature bin i to which the replacement pollution control device is exposed during the data collection phase, registered in the temperature histogram.

 t_{bin}^i = the time, in hours, corresponding to the temperature T_{bin}^i , adjusted to a full useful life basis e.g. if the histogram represented 5 hours, and useful life is 4000 hours according to Table 1, all histogram time entries would be multiplied by $\frac{4000}{5}$ = 800.

 t_e^i = the equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_{bin}^i during the time t_{bin}^i .

i =bin number, where 1 is number for the bin with the lowest temperature and n the value for the bin with the highest temperature.

2.3.4. The total equivalent ageing time shall be calculated in accordance with the following equation:

Equation 2:

$$AT = \sum_{i=1}^{n} t_e^i$$

Where:

- AT = total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_{bin}^i during the time t_{bin}^i of each one of the i bins registered in the histogram.
- t_e^i = the equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_{bin}^i during the time t_{bin}^i .
- i =bin number, where 1 is number for the bin with the lowest temperature and n the value for the bin with the highest temperature.
- n = Total number of temperature bins.
- 2.3.5. In the case referred to in point 2.2.13, AT shall be calculated for each device.
- 2.4. Service accumulation schedule
- 2.4.1. General requirements
- 2.4.1.1. The service accumulation schedule shall allow acceleration of the ageing of the replacement pollution control device, using the information gathered during the data collection phase set out in point 2.2.
- 2.4.1.2. The service accumulation schedule shall consist of a thermal accumulation schedule and a lubricant consumption accumulation schedule in accordance with point 2.4.4.6. The manufacturer, in agreement with the type-approval authority, may not have to carry out a lubricant consumption accumulation schedule in case the replacement pollution control devices are placed downstream of an after-treatment filter component (e.g. diesel particulate filter). Both the thermal accumulation schedule and the lubricant consumption accumulation schedule shall consist of a repetition of, respectively, a series of thermal and lubricant consumption sequences.
- 2.4.1.3. In the case of replacement pollution control devices operating in the presence of active regeneration, the thermal sequence shall be complemented with an active regeneration mode.
- 2.4.1.4. For service accumulation schedules consisting of both thermal and lubricant consumption accumulation schedules, their respective sequences shall be alternated, so that for each thermal sequence that has to be performed, the following sequence corresponds to lubricant consumption.
- 2.4.1.5. It is allowed to perform the service accumulation schedule at the same time for different devices. In that case, a single service accumulation schedule shall be set for all the devices.
- 2.4.2. Thermal accumulation schedule
- 2.4.2.1. The thermal accumulation schedule shall simulate the effect of thermal ageing on the performance of a replacement pollution control device until the end of its lifetime.

- 2.4.2.2. The engine used for the performance of the service accumulation schedule, fitted with the exhaust after-treatment system incorporating the replacement pollution control device, is operated for a minimum of three consecutive thermal sequences, as set out in Appendix 4.
- 2.4.2.3. The temperatures shall be recorded over a minimum of two thermal sequences. The first sequence, conducted for warming up, shall not be taken into account for the purpose of temperature gathering.
- 2.4.2.4. The temperatures shall be recorded at suitable locations, chosen in accordance with points 2.2.6. to 2.2.9., at a minimum rate of once every second (1 Hz).
- 2.4.2.5. The effective ageing time corresponding to the thermal sequences referred to in point 2.4.2.3., shall be calculated in accordance with the following equations:

Equation 3:

$$t_e^i = \frac{\sum_{n_c=1}^C e^{\left(\left(\frac{R}{T_r}\right) - \left(\frac{R}{T_i}\right)\right)}}{C}$$

Equation 4:

$$AE = \sum_{i=1}^{p} t_e^i$$

Where:

 t_e^i = the effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_i during the second i.

 T_i = the temperature, in K, measured in the second i, in each one of the thermal sequences.

R = thermal reactivity of the replacement pollution control device. The manufacturer shall agree with the type-approval authority on the R value to be used. It will also be possible, as alternative, to use the following default values:

- Diesel oxidation catalyst (DOC): 18.050.
- Catalysed DPF: 18.050
- SCR or ammonia oxidation catalyst (AMOX) based on iron-zeolite (Fe-Z): 5.175
- SCR copper-zeolite (Cu-Z): 11.550
- SCR Vanadium (V): 5.175
- LNT (lean-NOx trap): 18.050

 T_r = reference temperature, in K, being the same value as in equation 1.

AE = Effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device during the duration of the thermal sequence.

AT = total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_{bin}^i during the time t_{bin}^i of each one of the i bins registered in the histogram.

i = number of temperature measurement.

p = total number of temperature measurements.

 n_c = thermal sequence number, of those conducted for the purpose of temperature gathering, in accordance with point 2.4.2.3.

C = total number of thermal sequences conducted for the purpose of temperature gathering.

2.4.2.6. The total number of thermal sequences to be included in the service accumulation schedule shall be determined by applying the following equation:

Equation 5:

 $N_{TS} = AT/AE$

Where:

 N_{TS} = total number of thermal sequences to be carried out during the service accumulation schedule

- AT = total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_{bin}^i during the time t_{bin}^i of each one of the i bins registered in the histogram.
- AE = Effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device during the duration of the thermal sequence.
- 2.4.2.7. It is allowed to reduce N_{TS} and, consequently the service accumulation schedule, by increasing the temperatures at which each device is exposed at each mode of the ageing cycle through the application of one or several of the following measures:
- (a) insulating the exhaust pipe;
- (b) moving the replacement pollution control device closer to the exhaust manifold;
- (c) artificially heating up the temperature of the exhaust;
- (d) optimizing the engine settings without substantially changing the emission behaviour of the engine.
- 2.4.2.8. When applying the measures referred to in points 2.4.4.6. and 2.4.4.7., the total ageing time calculated from N_{TS} shall not be less than 10% of the useful life listed in Table 1, e.g. the vehicle category N_I shall not have an N_{TS} of less than 286 thermal sequences, assuming that each sequence is 1 hour long.
- 2.4.2.9. It is allowed to increase N_{TS} and, consequently, the duration of the service accumulation schedule, by lowering the temperatures at each mode of the ageing cycle through the application of one or several of the following measures:
- (a) moving the replacement pollution control device further away from the exhaust manifold;
- (b) artificially cooling down the temperature of the exhaust;
- (c) optimizing the engine settings.
- 2.4.2.10. In the case referred to in point 2.4.1.5., the following shall apply:
- 2.4.2.10.1. N_{TS} shall be the same for each device, so that a single service accumulation schedule can be set up.
- 2.4.2.10.2. In order to achieve the same N_{TS} for each device, a first N_{TS} value shall be calculated for each device, with its own AT and AE values.
- 2.4.2.10.3. If the calculated N_{TS} values are different, one or more of the measures set out in points 2.4.2.7. to 2.4.2.10. may be applied on the device or devices for which N_{TS} needs to be modified, over the thermal sequences referred to in point 2.4.2.3., in order to influence the measured T_i and therefore conveniently speed up or slow down the artificial ageing of the targeted device or devices.

- 2.4.2.10.4. The new N_{TS} values corresponding to the new temperatures T_i obtained in point 2.4.2.10.3. shall be calculated.
- 2.4.2.10.5. The steps set out in points 2.4.2.10.3. and 2.4.2.10.4. shall be repeated until the N_{TS} values obtained for each device in the system match.
- 2.4.2.10.6. The T_r values used for obtaining the different N_{TS} in points 2.4.2.10.4. and 2.4.2.10.5. shall be the same ones as those used in points 2.3.2. and 2.3.5. for calculating AT for each device.
- 2.4.2.11. In the case of an assembly of replacement pollution control devices constituting a system within the meaning of Article 3(25) of Directive 2007/46/EC, one of the following two options may be considered for the thermal ageing of the devices:
- 2.4.2.11.1. The devices within the assembly may be either separately or jointly aged, in accordance with point 2.4.2.10.
- 2.4.2.11.2. If the assembly is built in such a way that it is not possible to decouple the devices (e.g. DOC + SCR in a can), the thermal ageing of the assembly shall be carried out with the highest N_{TS} .
- 2.4.3. Modified thermal accumulation schedule for devices operating in the presence of active regeneration
- 2.4.3.1. The modified thermal accumulation schedule for devices operating in the presence of active regeneration shall simulate the effect of ageing due to both thermal load and active regeneration on a replacement pollution control device at the end of its lifetime.
- 2.4.3.2. The engine used for the service accumulation schedule, fitted with the exhaust after-treatment system incorporating the replacement pollution control device, is operated for a minimum of three modified thermal sequences, consisting each sequence of a thermal sequence as set out in Appendix 4, followed by a complete active regeneration, during which the peak temperature reached in the after-treatment system should be not lower than the peak temperature recorded in the data collection phase.
- 2.4.3.3. The temperatures shall be recorded over a minimum of two modified thermal sequences. The first sequence, conducted for warming up, shall not be taken into account for the purpose of temperature gathering.
- 2.4.3.4. In order to minimize the time elapsed between the thermal sequence as set out in Appendix 4 and the subsequent active regeneration, the manufacturer may artificially trigger the active regeneration by running, after each thermal sequence as set out in Appendix 4, the engine at a steady mode that enables a high production of soot by the engine. In that case, the steady mode shall also be considered as part of the modified thermal sequence set out in point 2.4.3.2.
- 2.4.3.5 The effective ageing time corresponding to each modified thermal sequence shall be calculated using equations 3 and 4.
- 2.4.3.6. The total number of modified thermal sequences to be conducted during the service accumulation schedule shall be calculated using equation 5.

- 2.4.3.7. It is allowed to reduce N_{TS} , and consequently the duration of the service accumulation schedule, by increasing the temperatures at each mode of the modified thermal sequence, applying one or several of the measures set out in point 2.4.2.7.
- 2.4.3.8. In addition to the measures referred to in point 2.4.3.7., N_{TS} can also be reduced by increasing the peak temperature of the active regeneration within the modified thermal sequence, without exceeding a bed temperature of 800 °C under any circumstances.
- 2.4.3.9. N_{TS} shall never be less than 50 % of the number of active regenerations to which the replacement pollution control device is subjected during its useful life, calculated in accordance with the following equation:

Equation 5:

$$N_{AR} = \frac{t_{WHTC}}{t_{AR} + t_{BAR}}$$

Where:

 N_{AR} = number of active regeneration sequences over the useful life of the replacement pollution control device.

 t_{WHTC} = equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.

 t_{AR} = duration, in hours, of an active regeneration.

 t_{BAR} = time, in hours, between two consecutive active regenerations.

- 2.4.3.10. If, as consequence of the application of the minimum number of modified thermal sequences as set out in point 2.4.3.9., $AE \times N_{TS}$ calculated using equation 4 exceeds the AT calculated using equation 2, the time of each mode of the thermal sequence set out in Appendix 4, and embedded in the modified thermal sequence as set out in point 2.4.3.2., may be reduced in the same proportion, in order to make $AE \times N_{TS} = AT$.
- 2.4.3.11. It is allowed to increase N_{TS} and consequently the duration of the service accumulation schedule, by lowering the temperatures at each mode of the thermal-active regeneration sequence by applying one or several of the measures set out in point 2.4.2.9.
- 2.4.3.12. In the case referred to in point 2.4.1.5., points 2.4.2.10. and 2.4.2.11. shall apply
- 2.4.4. Lubricant consumption accumulation schedule
- 2.4.4.1. The lubricant consumption accumulation schedule shall simulate the effect of ageing due to chemical poisoning or deposit formation as a result of lubricant consumption, on the performance of a replacement pollution control device at the end of its lifetime.
- 2.4.4.2. The lubricant consumed, in g/h, shall be determined over a minimum of 24 thermal sequences or a corresponding number of modified thermal sequences, using any suitable method, as for example the drain and weigh procedure described in Appendix 6. Fresh lubricant shall be used.

- 2.4.4.3. The engine shall be equipped with a constant volume oil sump in order to avoid the need of "top-offs", since oil level influences the oil consumption rate. Any suitable method, as for example the one described in the ASTM standard D7156-09, may be used.
- 2.4.4.4. The theoretical time, in hours, that the thermal accumulation schedule or modified thermal accumulation schedule, as it corresponds, would have to be conducted, in order to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement control device, shall be calculated by applying the following equation:

Equation 6:

$$t_{TAS} = \frac{LCR_{WHTC} \times t_{WHTC}}{LCR_{TAS}}$$

Where:

 t_{TAS} = theoretical duration, in hours, of the service accumulation schedule required to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement pollution control device, provided that the service accumulation schedule is only made up of a series of consecutive thermal sequences or consecutive modified thermal sequences.

 LCR_{WHTC} = lubricant consumption rate, in g/h determined as set out in point 2.2.15.

 t_{WHTC} = equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.

 LCR_{TAS} = lubricant consumption rate, in g/h, determined as set out in point 2.4.4.2.

2.4.4.5. The number of thermal sequences or modified thermal sequences corresponding to t_{TAS} shall be calculated by applying the following ratio:

Equation 7:

$$N = \frac{t_{TAS}}{t_{TS}}$$

Where:

N = number of thermal sequences or modified thermal sequences corresponding to t_{TAS} .

 t_{TAS} = theoretical duration, in hours, of the service accumulation schedule required to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement pollution control device, provided that the service accumulation schedule was only made up of a series of consecutive thermal sequences or consecutive modified thermal sequences.

 t_{TS} = duration, in hours, of a single thermal sequence or modified thermal sequence.

2.4.4.6. The value of N shall be compared to the value of N_{TS} calculated in accordance with point 2.4.2.6. or, for devices operating in the presence of active regeneration, in accordance with point 2.4.3.5. If $N \le N_{TS}$, it is not necessary to add a lubricant consumption

accumulation schedule to the thermal accumulation schedule. If $N > N_{TS}$, a lubricant consumption accumulation schedule shall be added to the thermal accumulation schedule.

- 2.4.4.7. A lubricant consumption accumulation schedule may not have to be added if, by increasing the lubricant consumption as described in point 2.4.4.8.4., the needed lubricant consumption is already achieved with the conduction of the corresponding thermal accumulation schedule consisting of the performance of N_{TS} thermal sequences or modified thermal sequences.
- 2.4.4.8. Development of the lubricant consumption accumulation schedule
- 2.4.4.8.1. The lubricant consumption accumulation schedule shall consist of a number of lubricant consumption sequences repeated several times, each lubricant consumption sequence being alternated with each thermal sequence or each modified thermal sequence.
- 2.4.4.8.2. Each lubricant consumption sequence shall consist of a steady mode at constant load and speed, the load and the speed being selected in such a way that the lubricant consumption is maximized and effective thermal aging is minimized. The mode shall be determined by the manufacturer in agreement with the type-approval authority, based on best engineering judgement.
- 2.4.4.8.3. The duration of each lubricant consumption sequence shall be determined as follows:
- 2.4.4.8.3.1. The engine shall be run for an appropriate period of time at the load and speed determined by the manufacturer in accordance with point 2.4.4.8.2. and the lubricant consumed, in g/h, shall be determined using any suitable method, as for example the drain and weigh procedure described in Appendix 6. Lubricant changes are to be completed at the recommended intervals.
- 2.4.4.8.3.2. The duration of each lubricant consumption sequence shall be calculated by applying the following equation:

Equation 8:

$$t_{LS} = \frac{LCR_{WHTC} \times t_{WHTC} - LCR_{TAS} \times N_{TS} \times t_{TS}}{LCR_{LAS} \times N_{TS}}$$

Where:

 t_{LS} = the duration, in hours, of a single lubricant consumption sequence

 LCR_{WHTC} = lubricant consumption rate, in g/h determined as set out in point 2.2.15.

 t_{WHTC} = equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.

 LCR_{TAS} = lubricant consumption rate, in g/h, determined as set out in point 2.4.4.2.

 LCR_{LAS} = lubricant consumption rate, in g/h, determined as set out in point 2.4.4.8.3.1.

 t_{TS} = duration, in hours, of a single thermal sequence, as set out in Appendix 4, or modified thermal sequence, as set out in point 2.4.3.2.

 N_{TS} = total number of thermal sequences or modified thermal sequences to be carried out during the service accumulation schedule.

- 2.4.4.8.4. The lubricant consumption rate shall always remain below 0,5 % of the engine fuel consumption rate in order to avoid excessive ash accumulation on the front face of the replacement pollution control device.
- 2.4.4.8.5. It is allowed to add the thermal ageing due to the conduction of the lubricant consumption sequence to the *AE* calculated in equation 4.
- 2.4.5. Development of the complete service accumulation schedule
- 2.4.5.1. The service accumulation schedule shall be built up alternating a thermal or a modified thermal sequence, as appropriate, with a lubricant consumption sequence. The aforementioned pattern shall be repeated N_{TS} times, being the N_{TS} value the one calculated either in accordance with section 2.4.2. or with section 2.4.3., as appropriate. An example of a complete service accumulation schedule is given in Appendix 7. A flowchart describing the development of a complete service accumulation schedule is given in Appendix 8.
- 2.4.6. Operation of the service accumulation schedule
- 2.4.6.1. The engine, fitted with the exhaust after-treatment system incorporating the replacement pollution control device, shall run the service accumulation schedule set out in point 2.4.5.1.
- 2.4.6.2. The engine used for the performance of the service accumulation schedule may be different to the engine used in the data collection phase, being the latter always the one for which the replacement pollution control device to be type-approved has been designed, and the one to be tested for emissions under point 2.4.3.2.
- 2.4.6.3. If the engine used for the performance of the service accumulation schedule features a larger displacement by 20 % or more than the engine used in the data collection phase, the exhaust system of the former should be equipped with a by-pass in order to replicate as closely as possible the exhaust flow rate of the latter at the ageing conditions selected.
- 2.4.6.4. In the case referred to in point 2.4.6.2., the engine used for the performance of the service accumulation schedule shall be type-approved under Regulation (EC) No 595/2009. In addition, if the device or devices under test are intended for being fitted in an engine system with exhaust gas recirculation (EGR), the engine system used for the service accumulation schedule shall also be fitted with an EGR. If the device or devices under test are intended for not being fitted in an engine system with EGR, the engine system used for the service accumulation schedule shall also not be fitted with an EGR.
- 2.4.6.5. The lubricant and the fuel used in the service accumulation schedule shall be as similar as possible to those used during the data collection phase set out in point 2.2. The lubricant must be in line with the recommendation of the engine manufacturer for which the pollution control device is designed. The fuels used should be market fuels fulfilling the corresponding requirements of Directive 98/70/EC. On the request of the manufacturer also reference fuels in accordance with this Regulation can be used.

- 2.4.6.6. The lubricant shall be changed for maintenance, at the intervals scheduled by the manufacturer of the engine used in the data collection phase.
- 2.4.6.7. In the case of an SCR, the urea injection shall be performed in accordance with the strategy defined by the manufacturer of the replacement pollution control device.';
- (5) The following Appendices 4 to 8 are added:

6

Appendix 4
Sequence for thermal ageing

Mode	Speed (% of high idle)	Load (% for a given speed)	Time (s)		
1	2.92	0.58	626		
2	45.72	1.58	418		
3	38.87	3.37	300		
4	20.23	11.36	102		
5	11.37	14.90	62		
6	32.78	18.52	370		
7	53.12	20.19	410		
8	59.53	34.73	780		
9	78.24	54.38	132		
10	39.07	62.85	212		
11	47.82	62.94	188		
Regeneration mode (if applicable)	To be defined (see point 2.4.3.4.)	To be defined (see point 2.4.3.4.)	To be defined (see point 2.4.3.4.)		
Lubricant consumption mode (if applicable)	To be defined according to point 2.4.4.8.2.	To be defined according to point 2.4.4.8.2.	To be defined according to point 2.4.4.8.3.		

Note: The sequence of the modes 1 to 11 has been arranged by ascending load in order to maximize the temperature of the exhaust gas in the high load modes. With the agreement of the type approval authority, this order can be modified in order to optimize the temperature of the exhaust gas if this can help in reducing the actual aging time.

Appendix 5

Test-cycle for chassis dynamometer or on-road data gathering

Time	Speed												
S	km/h												
1	0	261	22.38	521	35.46	781	18.33	1041	39.88	1301	66.39	1561	86.88
2	0	262	24.75	522	36.81	782	18.31	1042	41.25	1302	66.74	1562	86.7
3	0	263	25.55	523	37.98	783	18.05	1043	42.07	1303	67.43	1563	86.81
4	0	264	25.18	524	38.84	784	17.39	1044	43.03	1304	68.44	1564	86.81
5	0	265	23.94	525	39.43	785	16.35	1045	44.4	1305	69.52	1565	86.81
6	0	266	22.35	526	39.73	786	14.71	1046	45.14	1306	70.53	1566	86.81
7	2.35	267	21.28	527	39.8	787	11.71	1047	45.44	1307	71.47	1567	86.99
8	5.57	268	20.86	528	39.69	788	7.81	1048	46.13	1308	72.32	1568	87.03
9	8.18	269	20.65	529	39.29	789	5.25	1049	46.79	1309	72.89	1569	86.92
10	9.37	270	20.18	530	38.59	790	4.62	1050	47.45	1310	73.07	1570	87.1
11	9.86	271	19.33	531	37.63	791	5.62	1051	48.68	1311	73.03	1571	86.85
12	10.18	272	18.23	532	36.22	792	8.24	1052	50.13	1312	72.94	1572	87.14
13	10.38	273	16.99	533	34.11	793	10.98	1053	51.16	1313	73.01	1573	86.96
14	10.57	274	15.56	534	31.16	794	13.15	1054	51.37	1314	73.44	1574	86.85
15	10.95	275	13.76	535	27.49	795	15.47	1055	51.3	1315	74.19	1575	86.77
16	11.56	276	11.5	536	23.63	796	18.19	1056	51.15	1316	74.81	1576	86.81
17	12.22	277	8.68	537	20.16	797	20.79	1057	50.88	1317	75.01	1577	86.85
18	12.97	278	5.2	538	17.27	798	22.5	1058	50.63	1318	74.99	1578	86.74
19	14.33	279	1.99	539	14.81	799	23.19	1059	50.03	1319	74.79	1579	86.81
20	16.38	280	0	540	12.59	800	23.54	1060	49.12	1320	74.41	1580	86.7
21	18.4	281	0	541	10.47	801	24.2	1061	48.02	1321	74.07	1581	86.52
22	19.86	282	0	542	8.85	802	25.17	1062	47.7	1322	73.77	1582	86.7
23	20.85	283	0.5	543	8.16	803	26.28	1063	47.93	1323	73.38	1583	86.74
24	21.52	284	0.57	544	8.95	804	27.69	1064	48.57	1324	72.79	1584	86.81
25	21.89	285	0.6	545	11.3	805	29.72	1065	48.88	1325	71.95	1585	86.85
26	21.98	286	0.58	546	14.11	806	32.17	1066	49.03	1326	71.06	1586	86.92
27	21.91	287	0	547	15.91	807	34.22	1067	48.94	1327	70.45	1587	86.88
28	21.68	288	0	548	16.57	808	35.31	1068	48.32	1328	70.23	1588	86.85
29	21.21	289	0	549	16.73	809	35.74	1069	47.97	1329	70.24	1589	87.1
30	20.44	290	0	550	17.24	810	36.23	1070	47.92	1330	70.32	1590	86.81
31	19.24	291	0	551	18.45	811	37.34	1071	47.54	1331	70.3	1591	86.99
32	17.57	292	0	552	20.09	812	39.05	1072	46.79	1332	70.05	1592	86.81
33	15.53	293	0	553	21.63	813	40.76	1073	46.13	1333	69.66	1593	87.14
34	13.77	294	0	554	22.78	814	41.82	1074	45.73	1334	69.26	1594	86.81
35	12.95	295	0	555	23.59	815	42.12	1075	45.17	1335	68.73	1595	86.85
36	12.95	296	0	556	24.23	816	42.08	1076	44.43	1336	67.88	1596	87.03
37	13.35	297	0	557	24.9	817	42.27	1077	43.59	1337	66.68	1597	86.92
38	13.75	298	0	558	25.72	818	43.03	1078	42.68	1338	65.29	1598	87.14
39	13.82	299	0	559	26.77	819	44.14	1079	41.89	1339	63.95	1599	86.92
40	13.41	300	0	560	28.01	820	45.13	1080	41.09	1340	62.84	1600	87.03
41	12.26	301	0	561	29.23	821	45.84	1081	40.38	1341	62.21	1601	86.99
42	9.82	302	0	562	30.06	822	46.4	1082	39.99	1342	62.04	1602	86.96
43	5.96	303	0	563	30.31	823	46.89	1083	39.84	1343	62.26	1603	87.03
44	2.2	304	0	564	30.29	824	47.34	1084	39.46	1344	62.87	1604	86.85
45	0	305	0	565	30.05	825	47.66	1085	39.15	1345	63.55	1605	87.1
46	0	306	0	566	29.44	826	47.77	1086	38.9	1346	64.12	1606	86.81
47	0	307	0	567	28.6	827	47.78	1087	38.67	1347	64.73	1607	87.03
48	0	308	0	568	27.63	828	47.64	1088	39.03	1348	65.45	1608	86.77
49	0	309	0	569	26.66	829	47.23	1089	40.37	1349	66.18	1609	86.99
50	1.87	310	0	570	26.03	830	46.66	1090	41.03	1350	66.97	1610	86.96
51	4.97	311	0	571	25.85	831	46.08	1091	40.76	1351	67.85	1611	86.96
52	8.4	312	0	572	26.14	832	45.45	1092	40.02	1352	68.74	1612	87.07
53	9.9	313	0	573	27.08	833	44.69	1093	39.6	1353	69.45	1613	86.96
-	_	•	_	-	_	-	_	-	_	-	_		

	1		ı	ı	1		1	1	1	1	ı	1	1
54	11.42	314	0	574	28.42	834	43.73	1094	39.37	1354	69.92	1614	86.92
55	15.11	315	0	575	29.61	835	42.55	1095	38.84	1355	70.24	1615	87.07
56	18.46	316	0	576	30.46	836	41.14	1096	37.93	1356	70.49	1616	86.92
57	20.21	317	0	577	30.99	837	39.56	1097	37.19	1357	70.63	1617	87.14
58	22.13	318	0	578	31.33	838	37.93	1098	36.21	1358	70.68	1618	86.96
59	24.17	319	0	579	31.65	839	36.69	1099	35.32	1359	70.65	1619	87.03
60	25.56	320	0	580	32.02	840	36.27	1100	35.56	1360	70.49	1620	86.85
61	26.97	321	0	581	32.39	841	36.42	1101	36.96	1361	70.09	1621	86.77
62	28.83	322	0	582	32.68	842	37.14	1102	38.12	1362	69.35	1622	87.1
63	31.05	323	0	583	32.84	843	38.13	1103	38.71	1363	68.27	1623	86.92
64	33.72	324	3.01	584	32.93	844	38.55	1104	39.26	1364	67.09	1624	87.07
65	36	325	8.14	585	33.22	845	38.42	1105	40.64	1365	65.96	1625	86.85
66	37.91	326	13.88	586	33.89	846	37.89	1106	43.09	1366	64.87	1626	86.81
67	39.65	327	18.08	587	34.96	847	36.89	1107	44.83	1367	63.79	1627	87.14
68	41.23	328	20.01	588	36.28	848	35.53	1108	45.33	1368	62.82	1628	86.77
69	42.85	329	20.3	589	37.58	849	34.01	1109	45.24	1369	63.03	1629	87.03
70	44.1	330	19.53	590	38.58	850	32.88	1110	45.14	1370	63.62	1630	86.96
71	44.37	331	17.92	591	39.1	851	32.52	1111	45.06	1371	64.8	1631	87.1
72	44.3	332	16.17	592	39.22	852	32.7	1112	44.82	1372	65.5	1632	86.99
73	44.17	333	14.55	593	39.11	853	33.48	1113	44.53	1373	65.33	1633	86.92
74	44.13	334	12.92	594	38.8	854	34.97	1114	44.77	1374	63.83	1634	87.1
75	44.17	335	11.07	595	38.31	855	36.78	1115	45.6	1375	62.44	1635	86.85
76	44.51	336	8.54	596	37.73	856	38.64	1116	46.28	1376	61.2	1636	86.92
77	45.16	337	5.15	597	37.24	857	40.48	1117	47.18	1377	59.58	1637	86.77
78	45.64	338	1.96	598	37.06	858	42.34	1118	48.49	1378	57.68	1638	86.88
79	46.16	339	0	599	37.1	859	44.16	1119	49.42	1379	56.4	1639	86.63
80	46.99	340	0	600	37.42	860	45.9	1120	49.56	1380	54.82	1640	86.85
81	48.19	341	0	601	38.17	861	47.55	1121	49.47	1381	52.77	1641	86.63
82	49.32	342	0	602	39.19	862	49.09	1122	49.28	1382	52.22	1642	86.77
83	49.7	343	0	603	40.31	863	50.42	1123	48.58	1383	52.48	1643	86.77
84	49.5	344	0	604	41.46	864	51.49	1124	48.03	1384	52.74	1644	86.55
85	48.98	345	0	605	42.44	865	52.23	1125	48.2	1385	53.14	1645	86.59
86	48.65	346	0	606	42.95	866	52.58	1126	48.72	1386	53.03	1646	86.55
87	48.65	347	0	607	42.9	867	52.63	1127	48.91	1387	52.55	1647	86.7
88	48.87	348	0	608	42.43	868	52.49	1128	48.93	1388	52.19	1648	86.44
89	48.97	349	0	609	41.74	869	52.19	1129	49.05	1389	51.09	1649	86.7
90	48.96	350	0	610	41.04	870	51.82	1130	49.23	1390	49.88	1650	86.55
91	49.15	351	0	611	40.49	871	51.43	1131	49.28	1391	49.37	1651	86.33
92	49.13	352	0	612	40.49	872	51.43	1131	48.84	1391	49.26	1652	86.48
93	49.74	353	0	613	41.66	873	50.61	1133	48.12	1393	49.37	1653	86.19
94	50.31	354	0.9	614	42.48	874	50.26	1134	47.8	1394	49.88	1654	86.37
95	50.78	355	2	615	42.48	875	50.26	1134	47.42	1394	50.25	1655	86.59
96	50.75	356	4.08	616	42.78	876	49.97	1136	45.98	1393	50.23	1656	86.55
97	50.78	357	7.07	617	42.39	877	49.97	1130	42.96	1390	50.17	1657	86.7
98	51.21	358	10.25	618	37.72	878	49.67	1137	39.38	1397	50.83	1658	86.63
98	51.21	359	12.77	619	33.29	879	47.53	1138	35.82	1398	51.23	1659	86.55
100	51.89	360	14.44	620	27.66	880	47.53	1139	31.85	1400	51.23	1660	86.59
101	52.04	361	15.73	621	21.43	881	43.66	1140	26.87	1400	51.67	1661	86.55
101	51.99	362	17.23	622	15.62	882	40.91	1141	21.41		50.17		86.7
	- フルグラ		17.23	623	11.51		37.78			1402	49.99	1662	
1772		262		023		883	34.89	1143 1144	16.41 12.56	1403 1404	50.32	1663	86.55 86.7
103	51.99	363		624	0.60	Q O /I			/ 1D	1 441 144			
104	51.99 52.36	364	20.96	624	9.69	884						1664	
104 105	51.99 52.36 52.58	364 365	20.96 22.94	625	9.46	885	32.69	1145	10.41	1405	51.05	1665	86.52
104 105 106	51.99 52.36 52.58 52.47	364 365 366	20.96 22.94 25.05	625 626	9.46 10.21	885 886	32.69 30.99	1145 1146	10.41 9.07	1405 1406	51.05 51.45	1665 1666	86.52 86.85
104 105 106 107	51.99 52.36 52.58 52.47 52.03	364 365 366 367	20.96 22.94 25.05 27.31	625 626 627	9.46 10.21 11.78	885 886 887	32.69 30.99 29.31	1145 1146 1147	10.41 9.07 7.69	1405 1406 1407	51.05 51.45 52	1665 1666 1667	86.52 86.85 86.55
104 105 106 107 108	51.99 52.36 52.58 52.47 52.03 51.46	364 365 366 367 368	20.96 22.94 25.05 27.31 29.54	625 626 627 628	9.46 10.21 11.78 13.6	885 886 887 888	32.69 30.99 29.31 27.29	1145 1146 1147 1148	10.41 9.07 7.69 6.28	1405 1406 1407 1408	51.05 51.45 52 52.3	1665 1666 1667 1668	86.52 86.85 86.55 86.81
104 105 106 107 108 109	51.99 52.36 52.58 52.47 52.03 51.46 51.31	364 365 366 367 368 369	20.96 22.94 25.05 27.31 29.54 31.52	625 626 627 628 629	9.46 10.21 11.78 13.6 15.33	885 886 887 888 889	32.69 30.99 29.31 27.29 24.79	1145 1146 1147 1148 1149	10.41 9.07 7.69 6.28 5.08	1405 1406 1407 1408 1409	51.05 51.45 52 52.3 52.22	1665 1666 1667 1668 1669	86.52 86.85 86.55 86.81 86.74
104 105 106 107 108 109 110	51.99 52.36 52.58 52.47 52.03 51.46 51.31 51.45	364 365 366 367 368 369 370	20.96 22.94 25.05 27.31 29.54 31.52 33.19	625 626 627 628 629 630	9.46 10.21 11.78 13.6 15.33 17.12	885 886 887 888 889	32.69 30.99 29.31 27.29 24.79 21.78	1145 1146 1147 1148 1149 1150	10.41 9.07 7.69 6.28 5.08 4.32	1405 1406 1407 1408 1409 1410	51.05 51.45 52 52.3 52.22 52.66	1665 1666 1667 1668 1669 1670	86.52 86.85 86.55 86.81 86.74 86.63
104 105 106 107 108 109	51.99 52.36 52.58 52.47 52.03 51.46 51.31	364 365 366 367 368 369	20.96 22.94 25.05 27.31 29.54 31.52	625 626 627 628 629	9.46 10.21 11.78 13.6 15.33	885 886 887 888 889	32.69 30.99 29.31 27.29 24.79	1145 1146 1147 1148 1149	10.41 9.07 7.69 6.28 5.08	1405 1406 1407 1408 1409	51.05 51.45 52 52.3 52.22	1665 1666 1667 1668 1669	86.52 86.85 86.55 86.81 86.74

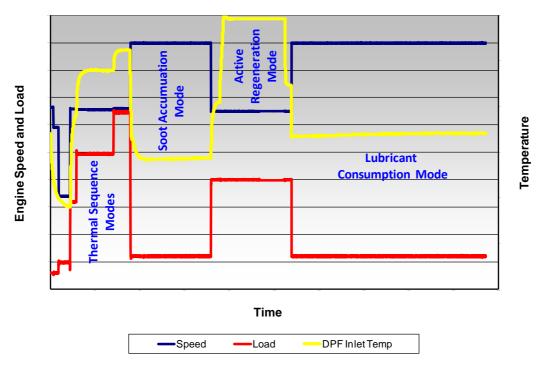
110		0.50	07.60		22.15	000	1100	11.50	1.05	1.110	- 1 - C	1.550	07.07
113	51.12	373	37.63	633	22.17	893	11.06	1153	1.07	1413	54.53	1673	87.07
114	50.96	374	39.07	634	23.29	894	6.28	1154	0.66	1414	55.37	1674	86.92
115	50.81	375	40.08	635	24.19	895	2.24	1155	0	1415	56.29	1675	87.07
116	50.86	376	40.44	636	24.97	896	0	1156	0	1416	57.31	1676	87.18
117	51.34	377	40.26	637	25.6	897	0	1157	0	1417	57.94	1677	87.32
118	51.68	378	39.29	638	25.96	898	0	1158	0	1418	57.86	1678	87.36
119	51.58	379	37.23	639	25.86	899	0	1159	0	1419	57.75	1679	87.29
120	51.36 51.39	380 381	34.14	640 641	24.69	900	0	1160 1161	0	1420 1421	58.67 59.4	1680	87.58
121 122	50.98	382	30.18	642	17.45	901	2.56	1161	0	1421	59.69	1681 1682	87.61 87.76
123	48.63	383	21.58	643	12.34	903	4.81	1163	0	1423	60.02	1683	87.65
123	44.83	384	18.5	644	7.59	904	6.38	1163	0	1423	60.02	1684	87.61
125	40.3	385	16.56	645	4	905	8.62	1165	0	1425	60.83	1685	87.65
126	35.65	386	15.39	646	1.76	906	10.37	1166	0	1426	61.16	1686	87.65
127	30.23	387	14.77	647	0	907	11.17	1167	0	1427	61.6	1687	87.76
128	24.08	388	14.58	648	0	908	13.32	1168	0	1428	62.15	1688	87.76
129	18.96	389	14.72	649	0	909	15.94	1169	0	1429	62.7	1689	87.8
130	14.19	390	15.44	650	0	910	16.89	1170	0	1430	63.65	1690	87.72
131	8.72	391	16.92	651	0	911	17.13	1171	0	1431	64.27	1691	87.69
132	3.41	392	18.69	652	0	912	18.04	1172	0	1432	64.31	1692	87.54
133	0.64	393	20.26	653	0	913	19.96	1173	0	1433	64.13	1693	87.76
134	0	394	21.63	654	0	914	22.05	1174	0	1434	64.27	1694	87.5
135	0	395	22.91	655	0	915	23.65	1175	0	1435	65.22	1695	87.43
136	0	396	24.13	656	0	916	25.72	1176	0	1436	66.25	1696	87.47
137	0	397	25.18	657	0	917	28.62	1177	0	1437	67.09	1697	87.5
138	0	398	26.16	658	2.96	918	31.99	1178	0	1438	68.37	1698	87.5
139	0	399	27.41	659	7.9	919	35.07	1179	0	1439	69.36	1699	87.18
140	0	400	29.18	660	13.49	920	37.42	1180	0	1440	70.57	1700	87.36
141	0	401	31.36	661	18.36	921	39.65	1181	0	1441	71.89	1701	87.29
142	0.63	402	33.51	662	22.59	922	41.78	1182	0	1442	73.35	1702	87.18
143	1.56	403	35.33	663	26.26	923	43.04	1183	0	1443	74.64	1703	86.92
144	2.99	404	36.94	664	29.4	924	43.55	1184	0	1444	75.81	1704	87.36
145	4.5	405	38.6	665	32.23	925	42.97	1185	0	1445	77.24	1705	87.03
146	5.39	406	40.44	666	34.91	926	41.08	1186	0	1446	78.63	1706	87.07
147	5.59	407	42.29	667	37.39	927	40.38	1187	0	1447	79.32	1707	87.29
148	5.45	408	43.73	668	39.61	928	40.43	1188	0	1448	80.2	1708	86.99
149	5.2	409	44.47	669	41.61	929	40.4	1189	0	1449	81.67	1709	87.25
150	4.98	410	44.62	670	43.51	930	40.25	1190	0	1450	82.11	1710	87.14
151 152	4.61 3.89	411	44.41	671	45.36	931	40.32	1191 1192	0	1451	82.91	1711	86.96
153	3.21	413	43.96 43.41	672 673	47.17 48.95	932 933	40.8	1192	0	1452 1453	83.43 83.79	1712 1713	87.14 87.07
154	2.98	414	42.83	674	50.73	933	43.16	1193	0	1454	83.5	1713	86.92
155	3.31	415	42.15	675	52.36	935	44.84	1195	0	1455	84.01	1715	86.88
156	4.18	416	41.28	676	53.74	936	46.42	1196	1.54	1456	83.43	1716	86.85
157	5.07	417	40.17	677	55.02	937	47.91	1197	4.85	1457	82.99	1717	86.92
158	5.52	418	38.9	678	56.24	938	49.08	1198	9.06	1458	82.77	1718	86.81
159	5.73	419	37.59	679	57.29	939	49.66	1199	11.8	1459	82.33	1719	86.88
160	6.06	420	36.39	680	58.18	940	50.15	1200	12.42	1460	81.78	1720	86.66
161	6.76	421	35.33	681	58.95	941	50.94	1201	12.07	1461	81.81	1721	86.92
162	7.7	422	34.3	682	59.49	942	51.69	1202	11.64	1462	81.05	1722	86.48
163	8.34	423	33.07	683	59.86	943	53.5	1203	11.69	1463	80.72	1723	86.66
164	8.51	424	31.41	684	60.3	944	55.9	1204	12.91	1464	80.61	1724	86.74
165	8.22	425	29.18	685	61.01	945	57.11	1205	15.58	1465	80.46	1725	86.37
166	7.22	426	26.41	686	61.96	946	57.88	1206	18.69	1466	80.42	1726	86.48
167	5.82	427	23.4	687	63.05	947	58.63	1207	21.04	1467	80.42	1727	86.33
168	4.75	428	20.9	688	64.16	948	58.75	1208	22.62	1468	80.24	1728	86.3
169	4.24	429	19.59	689	65.14	949	58.26	1209	24.34	1469	80.13	1729	86.44
170	4.05	430	19.36	690	65.85	950	58.03	1210	26.74	1470	80.39	1730	86.33
171	3.98	431	19.79	691	66.22	951	58.28	1211	29.62	1471	80.72	1731	86

	I .	T	T	1	1	T	Π		T	1	Π	1	T
172	3.91	432	20.43	692	66.12	952	58.67	1212	32.65	1472	81.01	1732	86.33
173	3.86	433	20.71	693	65.01	953	58.76	1213	35.57	1473	81.52	1733	86.22
174	4.17	434	20.56	694	62.22	954	58.82	1214	38.07	1474	82.4	1734	86.08
175	5.32	435	19.96	695	57.44	955	59.09	1215	39.71	1475	83.21	1735	86.22
176	7.53	436	20.22	696	51.47	956	59.38	1216	40.36	1476	84.05	1736	86.33
177	10.89	437	21.48	697	45.98	957	59.72	1217	40.6	1477	84.85	1737	86.33
178	14.81	438	23.67	698	41.72	958	60.04	1218	41.15	1478	85.42	1738	86.26
179	17.56	439	26.09	699	38.22	959	60.13	1219	42.23	1479	86.18	1739	86.48
180	18.38	440	28.16	700	34.65	960	59.33	1220	43.61	1480	86.45	1740	86.48
181	17.49	441	29.75	701	30.65	961	58.52	1221	45.08	1481	86.64	1741	86.55
182	15.18	442	30.97	702	26.46	962	57.82	1222	46.58	1482	86.57	1742	86.66
183	13.08	443	31.99	703	22.32	963	56.68	1223	48.13	1483	86.43	1743	86.66
184	12.23	444	32.84	704	18.15	964	55.36	1224	49.7	1484	86.58	1744	86.59
185	12.03	445	33.33	705	13.79	965	54.63	1225	51.27	1485	86.8	1745	86.55
186	11.72	446	33.45	706	9.29	966	54.04	1226	52.8	1486	86.65	1746	86.74
187	10.69	447	33.27	707	4.98	967	53.15	1227	54.3	1487	86.14	1747	86.21
188	8.68	448	32.66	708	1.71	968	52.02	1228	55.8	1488	86.36	1748	85.96
189	6.2	449	31.73	709	0	969	51.37	1229	57.29	1489	86.32	1749	85.5
190	4.07	450	30.58	710	0	970	51.41	1230	58.73	1490	86.25	1750	84.77
191	2.65	451	29.2	711	0	971	52.2	1231	60.12	1491	85.92	1751	84.65
192	1.92	452	27.56	712	0	972	53.52	1232	61.5	1492	86.14	1752	84.1
193	1.69	453	25.71	713	0	973	54.34	1233	62.94	1493	86.36	1753	83.46
194	1.68	454	23.76	714	0	974	54.59	1234	64.39	1494	86.25	1754	82.77
195	1.66	455	21.87	715	0	975	54.92	1235	65.52	1495	86.5	1755	81.78
196	1.53	456	20.15	716	0	976	55.69	1236	66.07	1496	86.14	1756	81.16
197	1.3	457	18.38	717	0	977	56.51	1237	66.19	1497	86.29	1757	80.42
198	1	458	15.93	718	0	978	56.73	1238	66.19	1498	86.4	1758	79.21
199	0.77	459	12.33	719	0	979	56.33	1239	66.43	1499	86.36	1759	78.48
200	0.63	460	7.99	720	0	980	55.38	1240	67.07	1500	85.63	1760	77.49
201	0.59	461	4.19	721	0	981	54.99	1241	68.04	1501	86.03	1761	76.69
202	0.59	462	1.77	722	0	982	54.75	1242	69.12	1502	85.92	1762	75.92
203	0.57	463	0.69	723	0	983	54.11	1243	70.08	1503	86.14	1763	75.08
204	0.53	464	1.13	724	0	984	53.32	1244	70.91	1504	86.32	1764	73.87
205	0.5	465	2.2	725	0	985	52.41	1245	71.73	1505	85.92	1765	72.15
206	0	466	3.59	726	0	986	51.45	1246	72.66	1506	86.11	1766	69.69
207	0	467	4.88	727	0	987	50.86	1247	73.67	1507	85.91	1767	67.17
208	0	468	5.85	728	0	988	50.48	1248	74.55	1508	85.83	1768	64.75
209	0	469	6.72	729	0	989	49.6	1249	75.18	1509	85.86	1769	62.55
210	0	470	8.02	730	0	990	48.55	1250	75.59	1510	85.5	1770	60.32
211	0	471	10.02	731	0	991	47.87	1251	75.82	1511	84.97	1771	58.45
212	0	472	12.59	732	0	992	47.42	1252	75.9	1512	84.8	1772	56.43
213	0	473	15.43	733	0	993	46.86	1253	75.92	1513	84.2	1773	54.35
214	0	474	18.32	734	0	994	46.08	1254	75.87	1514	83.26	1774	52.22
215	0	475	21.19	735	0	995	45.07	1255	75.68	1515	82.77	1775	50.25
216	0	476	24	736	0	996	43.58	1256	75.37	1516	81.78	1776	48.23
217	0	477	26.75	737	0	997	41.04	1257	75.01	1517	81.16	1777	46.51
218	0	478	29.53	738	0	998	38.39	1258	74.55	1518	80.42	1778	44.35
219	0	479	32.31	739	0	999	35.69	1259	73.8	1519	79.21	1779	41.97
220	0	480	34.8	740	0	1000	32.68	1260	72.71	1520	78.83	1780	39.33
221		481	36.73	741	0	1001	29.82	1261	71.39	1521	78.52	1781	36.48
222	0	482	38.08	742	0	1002	26.97	1262	70.02	1522	78.52	1782	33.8
223	0	483	39.11	743	0	1003	24.03	1263	68.71	1523	78.81	1783	31.09
224	0	484	40.16	744	0	1004	21.67	1264	67.52	1524	79.26	1784	28.24
225	0 72	485	41.18	745	0	1005	20.34	1265	66.44	1525	79.61	1785	26.81
226	0.73	486	41.75	746	0	1006	18.9	1266	65.45	1526	80.15	1786	23.33
227	0.73	487	41.87	747	0	1007	16.21	1267	64.49	1527	80.39	1787	19.01
228 229	0	488 489	41.43	748	0	1008	13.84 12.25	1268	63.54	1528	80.72	1788	15.05
230	0	489	39.99	749 750	0	1009		1269	62.6	1529	81.01	1789	12.09 9.49
230	U	490	37.71	750	0	1010	10.4	1270	61.67	1530	81.52	1790	9.49

231	0	491	34.93	751	0	1011	7.94	1271	60.69	1531	82.4	1791	6.81
232	0	492	31.79	752	0	1012	6.05	1272	59.64	1532	83.21	1792	4.28
233	0	493	28.65	753	0	1013	5.67	1273	58.6	1533	84.05	1793	2.09
234	0	494	25.92	754	0	1014	6.03	1274	57.64	1534	85.15	1794	0.88
235	0	495	23.91	755	0	1015	7.68	1275	56.79	1535	85.92	1795	0.88
236	0	496	22.81	756	0	1016	10.97	1276	55.95	1536	86.98	1796	0
237	0	497	22.53	757	0	1017	14.72	1277	55.09	1537	87.45	1797	0
238	0	498	22.62	758	0	1018	17.32	1278	54.2	1538	87.54	1798	0
239	0	499	22.95	759	0	1019	18.59	1279	53.33	1539	87.25	1799	0
240	0	500	23.51	760	0	1020	19.35	1280	52.52	1540	87.04	1800	0
241	0	501	24.04	761	0	1021	20.54	1281	51.75	1541	86.98		
242	0	502	24.45	762	0	1022	21.33	1282	50.92	1542	87.05		
243	0	503	24.81	763	0	1023	22.06	1283	49.9	1543	87.1		
244	0	504	25.29	764	0	1024	23.39	1284	48.68	1544	87.25		
245	0	505	25.99	765	0	1025	25.52	1285	47.41	1545	87.25		
246	0	506	26.83	766	0	1026	28.28	1286	46.5	1546	87.07		
247	0	507	27.6	767	0	1027	30.38	1287	46.22	1547	87.29		
248	0	508	28.17	768	0	1028	31.22	1288	46.44	1548	87.14		
249	0	509	28.63	769	0	1029	32.22	1289	47.35	1549	87.03		
250	0	510	29.04	770	0	1030	33.78	1290	49.01	1550	87.25		
251	0	511	29.43	771	0	1031	35.08	1291	50.93	1551	87.03		
252	0	512	29.78	772	1.6	1032	35.91	1292	52.79	1552	87.03		
253	1.51	513	30.13	773	5.03	1033	36.06	1293	54.66	1553	87.07		
254	4.12	514	30.57	774	9.49	1034	35.5	1294	56.6	1554	86.81		
255	7.02	515	31.1	775	13	1035	34.76	1295	58.55	1555	86.92		
256	9.45	516	31.65	776	14.65	1036	34.7	1296	60.47	1556	86.66		
257	11.86	517	32.14	777	15.15	1037	35.41	1297	62.28	1557	86.92		
258	14.52	518	32.62	778	15.67	1038	36.65	1298	63.9	1558	86.59		
259	17.01	519	33.25	779	16.76	1039	37.57	1299	65.2	1559	86.92		
260	19.48	520	34.2	780	17.88	1040	38.51	1300	66.02	1560	86.59		

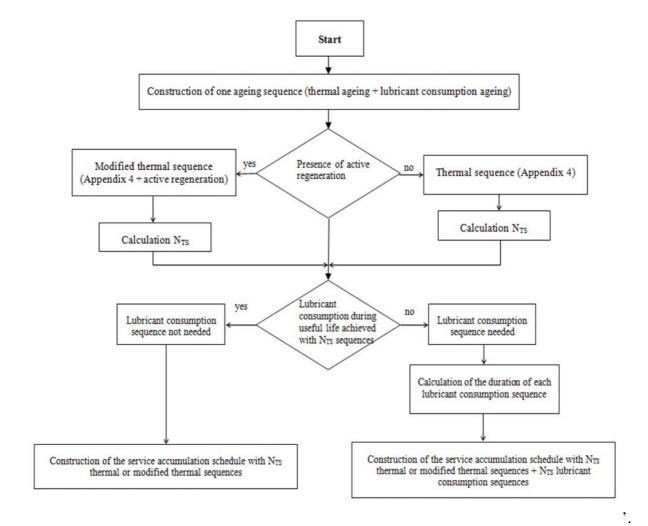
Appendix 6

Drain and weigh procedure


- 1. The engine shall be filled with new oil. If a constant volume oil sump system (as described in ASTM standard D7156-09) is used, the oil pump shall be turned on while filling the engine. Enough oil charge shall be added to fill up both the engine and external sump.
- 2. The engine shall be started and operated over the desired test cycle (see points 2.2.15 and 2.4.4.8.3.1.) for a minimum of 1 hour.
- 3. Once the cycle is complete, oil temperature shall be allowed to stabilize at a steady-state engine condition before shutting the engine down.
- 4. A clean, empty oil drain pan shall be weighed.
- 5. Any clean supplies that are to be used during the oil drain (e.g. rags) shall be weighed.
- 6. The oil shall be drained for 10 minutes with the external oil pump (if equipped) powered on followed by an additional ten minutes with the pump powered off. If a constant volume sump system is not used, the oil shall be drained from the engine for a total of 20 minutes.
- 7. The drained oil shall be weighed.
- 8. The weight determined in accordance with step 7 shall be subtracted from the weight determined in accordance with step 4. The difference corresponds to the total weight of the oil removed from the engine and collected in the drain pan.
- 9. The oil shall be carefully returned to the engine.
- 10. The empty drain pan shall be weighted.
- 11. The weight determined in accordance with step 10 shall be subtracted from the weight determined in accordance with step 4. The result corresponds to the weight of the residual oil in the drain pan that was not returned to the engine.
- 12. Any dirty supplies which have previously been weighed pursuant to Step 5, shall be weighed.
- 13. The weight determined in accordance with step 12 shall be subtracted from the weight determined in accordance with step 5. The result corresponds to the weight of the residual oil which remained on the dirty supplies that was not returned to the engine.
- 14. The residual oil weights calculated in accordance with steps 11 and 13 shall be subtracted from the total weight of the oil removed, calculated in accordance with step 8. The difference between those weights corresponds to the total weight of the oil returned to the engine.
- 15. The engine shall be operated under the desired test cycle(s) (see points 2.2.15 and 2.4.4.8.3.1.)

- 16. Steps 3 8 shall be repeated.
- 17. The weight of the oil drained pursuant to step 16 shall be subtracted from the weight obtained in accordance with step 14. The difference between those weights corresponds to the total weight of the oil consumed.
- 18. The total weight of the oil consumed calculated pursuant to step 14 shall be divided by the duration, in hours, of the test cycles carried out in accordance with step 15. The result is the lubricant consumption rate.

Appendix 7


Example of service accumulation schedule including thermal, lubricant consumption and regeneration sequences

Example Service Accumulation Cycle

Appendix 8

Flowchart on the performance of the service accumulation schedule

www.parlament.gv.at

ANNEX V

Annex XIII to Regulation (EU) No 582/2011 is amended as follows:

- (1) points 2.1.2.2.1. and 2.1.2.2.2. are replaced by the following:
- '2.1.2.2.1 The provisions on reagent quality monitoring set out in points 7. to 7.1.3. of this Annex shall apply, instead of points 4.1. and 4.2. of Annex XVI to Regulation (EC) No 692/2008.
- 2.1.2.2.2 The provisions on reagent consumption monitoring and dosing activity set out in points 8., 8.1. and 8.1.1. of this Annex shall apply, instead of points 5. to 5.5. of Annex XVI to Regulation (EC) No 692/2008.';
- (2) points 8. and 8.1. are replaced by the following:
- '8. REAGENT CONSUMPTION AND DOSING ACTIVITY
- 8.1. The measures regarding reagent consumption monitoring and dosing activity shall be those set out in paragraph 8 of Annex 11 to UN/ECE Regulation No 49.'.

ANNEX VI

Annex XIV to Regulation (EU) No 582/2011 is amended as follows:

- (1) point 2.2.1. is replaced by the following:
- '2.2.1. For positive-ignition engines fuelled with petrol or E85, paragraph 5.2.3.1 of UN/ECE Regulation No 85 shall be understood as follows:

"The fuel used shall be the one available on the market. In any case of dispute the fuel shall be the appropriate reference fuel specified in Annex IX to Regulation (EU) No 582/2011.";

- (2) point 2.2.4. is replaced by the following:
- '2.2.4. For compression-ignition engines, paragraph 5.2.3.4 of UN/ECE Regulation 85 shall be understood as follows:

"The fuel used shall be the one available on the market. In any case of dispute the fuel shall be the appropriate reference fuel specified in Annex IX to Regulation (EU) No 582/2011."'.