Conflict in Parliament: An Automated Analysis of the Behavior of Members of the Austrian National Council

Fabian Habersack • Adam Jatowt • Marcelo Jenny • Dominik Scherer

conflict-parl-powi@uibk.ac.at

Research Goals

Contribution to political science

- \checkmark Explaining the voting behavior of Members of the (Austrian) Parliament
- \checkmark Understanding vote defections, and (strategic) absence as 'silent protest'

Methodological innovation

✓ Introducing *Natural Language Processing* (NLP) to the study of parliamentary behavior

Workflow

1.Data Collection and Pre-Processing

- ✓ Training: photographic data from (a) Politometer; (b) Bing API; (c) parlament.gv.at
- \checkmark Clean and prepare data for training of neural network algorithms

2.Face Recognition and Object detection

✓ Identify Members of Parliament through recognizing faces (bounding boxes)

✓ Utilizing Machine Learning and Deep Learning to record and analyze voting decisions

Societal contribution

- ✓ Archiving MP voting records via the Austrian Social Science Data Archive
- \checkmark Providing accessible information and data for the public and researchers alike.
- ✓ Identify voting decisions through object detection (sit | stand)

3.Data Analysis

- ✓ Analyze voting patterns using (automatically) recorded voting data
- \checkmark Analyze other aspects of MP behavior, e.g. speeches by using emotion recognition

Date	Vote ID	MP ID	Vote (no/yes)
06-06-2021	14	PAD_00105	Yea
06-06-2021	14	PAD_93256	Yea
06-06-2021	14	PAD_01405	Nay

Data and Methods

Automated recognition of MPs in parliament using *Face recognition*

- ✓ Algorithm: Deep Convolutional Neural Network (CNN); e.g. 'FaceNet''; 'DeepFace'', etc.
- ✓ Train pre-trained model on faces of MPs (and possibly bodies, heads, seats)

Automated identification of voting decisions using Object detection

- ✓ Algorithm: Deep Convolutional Neural Network (CNN); e.g. "YOLOv8"
- ✓ Train pre-trained model on standing versus sitting bodies

Software to implement face detection, recognition, and vote recording

✓ Software: Python

Libraries: "Face_recognition"; "DeepFace"; "Keras"; "PyTorch"; etc.

Application and Next Steps

1.Assistance with vote recording

- \checkmark Determine if a bill has been passed or failed to reach required votes
- \checkmark Avoid errors in aggregate and individual-level vote records

2.Analyzing voting patterns

- ✓ Investigate the effect of constituency interests on voting patterns
- ✓ Examine how far MPs ideologically deviate from party line

3.Beyond voting

- \checkmark Explain emotion in MP facial expressions when speaking or voting
- ✓ Analyze audio based on audio-visual data (broadcasts of plenary debates)

